From Wikipedia, the free encyclopedia
It is User:wonghang.
Proof of Leibniz formula
Proof of Wallis's product
[edit]
Proof of Wallis product
Basel problem
Machin's formula
![{\displaystyle {\frac {\pi }{4}}=4\tan ^{-1}{\frac {1}{5}}-\tan ^{-1}{\frac {1}{239}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/36ee79350cf63d32d253e5c16ad7e65b98ea1c11)
Recall the formulas:
![{\displaystyle \tan(x+y)={\frac {\tan x+\tan y}{1-\tan x\tan y}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/78135b76d13ffd774d6d205fa56006c9a52645d1)
![{\displaystyle \tan(x-y)={\frac {\tan x-\tan y}{1+\tan x\tan y}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/56baf006f664396223174aef08c0ba165daa2295)
![{\displaystyle \tan(2x)={\frac {2\tan x}{1-\tan ^{2}x}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7504324b2c259678416593f25bb3998535fd46d5)
Let
![{\displaystyle \tan \alpha ={\frac {1}{5}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/952a1d50f71175cb3945c0d351f4ea8fc9441e58)
We can obtain tan(2α) = 5/12 and tan(4α) = 120/119 by using the above formula.
Therefore,
![{\displaystyle \tan(4\tan ^{-1}{\frac {1}{5}})={\frac {120}{119}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b8cba83d18cc1301c4865f0d490611365a3b9240)
Consider,
![{\displaystyle \tan(4\tan ^{-1}{\frac {1}{5}}-\tan ^{-1}{\frac {1}{239}})={\frac {{\frac {120}{119}}-{\frac {1}{239}}}{1+{\frac {120}{119}}{\frac {1}{239}}}}={\frac {120\cdot 239-119}{119\cdot 239+120}}={\frac {120(120+119)-119}{119(120+119)+120}}={\frac {120^{2}+119^{2}}{120^{2}+119^{2}}}=1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/45b33fc786373dec87935ec74219378e3fc324f5)
![{\displaystyle 4\tan ^{-1}{\frac {1}{5}}-\tan ^{-1}{\frac {1}{239}}={\frac {\pi }{4}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6dc9148adeb145e2facfdc42421a156163fdfde0)
Q.E.D.